0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 GroundTermsRemoverProof (⇔)
↳6 ITRS
↳7 DuplicateArgsRemoverProof (⇔)
↳8 ITRS
↳9 ITRStoIDPProof (⇔)
↳10 IDP
↳11 UsableRulesProof (⇔)
↳12 IDP
↳13 IDPNonInfProof (⇐)
↳14 AND
↳15 IDP
↳16 IDependencyGraphProof (⇔)
↳17 IDP
↳18 IDPNonInfProof (⇐)
↳19 AND
↳20 IDP
↳21 IDependencyGraphProof (⇔)
↳22 TRUE
↳23 IDP
↳24 IDependencyGraphProof (⇔)
↳25 TRUE
↳26 IDP
↳27 IDependencyGraphProof (⇔)
↳28 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Cond_Load4752(x1, x2, x3, x4, x5, x6, x7) → Cond_Load4752(x1, x3, x4, x5, x6, x7)
Load475(x1, x2, x3, x4, x5, x6) → Load475(x2, x3, x4, x5, x6)
Load344(x1, x2, x3) → Load344(x2, x3)
Load487(x1, x2, x3, x4, x5) → Load487(x2, x3, x4, x5)
Cond_Load4751(x1, x2, x3, x4, x5, x6, x7) → Cond_Load4751(x1, x3, x4, x5, x6, x7)
Cond_Load475(x1, x2, x3, x4, x5, x6, x7) → Cond_Load475(x1, x3, x4, x5, x6, x7)
Cond_Load344(x1, x2, x3, x4) → Cond_Load344(x1, x3, x4)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Cond_Load4752(x1, x2, x3, x4, x5, x6) → Cond_Load4752(x1, x3, x4, x5, x6)
Load475(x1, x2, x3, x4, x5) → Load475(x2, x3, x4, x5)
Load487(x1, x2, x3, x4) → Load487(x2, x3, x4)
Cond_Load4751(x1, x2, x3, x4, x5, x6) → Cond_Load4751(x1, x3, x4, x5, x6)
Cond_Load475(x1, x2, x3, x4, x5, x6) → Cond_Load475(x1, x3, x4, x5, x6)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((i29[0] > 1 →* TRUE)∧(i29[0] →* i29[1])∧(i25[0] →* i25[1]))
(1) -> (2), if ((i25[1] →* i25[2])∧(0 →* i38[2])∧(i29[1] →* i29[2])∧(i29[1] →* i41[2]))
(1) -> (4), if ((i29[1] →* i29[4])∧(0 →* i38[4])∧(i29[1] →* i41[4])∧(i25[1] →* i25[4]))
(1) -> (7), if ((i25[1] →* i25[7])∧(i29[1] →* i40[7])∧(i29[1] →* i29[7])∧(0 →* i38[7]))
(2) -> (3), if ((i41[2] →* i41[3])∧(i38[2] →* i38[3])∧(i29[2] →* i29[3])∧(i25[2] →* i25[3])∧(i41[2] > 1 && i38[2] + 1 > 0 →* TRUE))
(3) -> (2), if ((i29[3] →* i29[2])∧(i41[3] - 2 →* i41[2])∧(i25[3] →* i25[2])∧(i38[3] + 1 →* i38[2]))
(3) -> (4), if ((i25[3] →* i25[4])∧(i38[3] + 1 →* i38[4])∧(i29[3] →* i29[4])∧(i41[3] - 2 →* i41[4]))
(3) -> (7), if ((i41[3] - 2 →* i40[7])∧(i25[3] →* i25[7])∧(i38[3] + 1 →* i38[7])∧(i29[3] →* i29[7]))
(4) -> (5), if ((i38[4] →* i38[5])∧(i41[4] →* i41[5])∧(i41[4] > 0 && i41[4] <= 1 →* TRUE)∧(i29[4] →* i29[5])∧(i25[4] →* i25[5]))
(5) -> (6), if ((i25[5] →* i25[6])∧(i38[5] →* i38[6])∧(i29[5] →* i29[6]))
(6) -> (0), if ((i38[6] →* i29[0])∧(i25[6] + 1 →* i25[0]))
(7) -> (8), if ((i38[7] →* i38[8])∧(i40[7] →* i40[8])∧(i25[7] →* i25[8])∧(i29[7] →* i29[8])∧(i40[7] <= 1 && i25[7] + 1 > 0 →* TRUE))
(8) -> (0), if ((i25[8] + 1 →* i25[0])∧(i38[8] →* i29[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((i29[0] > 1 →* TRUE)∧(i29[0] →* i29[1])∧(i25[0] →* i25[1]))
(1) -> (2), if ((i25[1] →* i25[2])∧(0 →* i38[2])∧(i29[1] →* i29[2])∧(i29[1] →* i41[2]))
(1) -> (4), if ((i29[1] →* i29[4])∧(0 →* i38[4])∧(i29[1] →* i41[4])∧(i25[1] →* i25[4]))
(1) -> (7), if ((i25[1] →* i25[7])∧(i29[1] →* i40[7])∧(i29[1] →* i29[7])∧(0 →* i38[7]))
(2) -> (3), if ((i41[2] →* i41[3])∧(i38[2] →* i38[3])∧(i29[2] →* i29[3])∧(i25[2] →* i25[3])∧(i41[2] > 1 && i38[2] + 1 > 0 →* TRUE))
(3) -> (2), if ((i29[3] →* i29[2])∧(i41[3] - 2 →* i41[2])∧(i25[3] →* i25[2])∧(i38[3] + 1 →* i38[2]))
(3) -> (4), if ((i25[3] →* i25[4])∧(i38[3] + 1 →* i38[4])∧(i29[3] →* i29[4])∧(i41[3] - 2 →* i41[4]))
(3) -> (7), if ((i41[3] - 2 →* i40[7])∧(i25[3] →* i25[7])∧(i38[3] + 1 →* i38[7])∧(i29[3] →* i29[7]))
(4) -> (5), if ((i38[4] →* i38[5])∧(i41[4] →* i41[5])∧(i41[4] > 0 && i41[4] <= 1 →* TRUE)∧(i29[4] →* i29[5])∧(i25[4] →* i25[5]))
(5) -> (6), if ((i25[5] →* i25[6])∧(i38[5] →* i38[6])∧(i29[5] →* i29[6]))
(6) -> (0), if ((i38[6] →* i29[0])∧(i25[6] + 1 →* i25[0]))
(7) -> (8), if ((i38[7] →* i38[8])∧(i40[7] →* i40[8])∧(i25[7] →* i25[8])∧(i29[7] →* i29[8])∧(i40[7] <= 1 && i25[7] + 1 > 0 →* TRUE))
(8) -> (0), if ((i25[8] + 1 →* i25[0])∧(i38[8] →* i29[0]))
(1) (>(i29[0], 1)=TRUE∧i29[0]=i29[1]∧i25[0]=i25[1] ⇒ LOAD344(i29[0], i25[0])≥NonInfC∧LOAD344(i29[0], i25[0])≥COND_LOAD344(>(i29[0], 1), i29[0], i25[0])∧(UIncreasing(COND_LOAD344(>(i29[0], 1), i29[0], i25[0])), ≥))
(2) (>(i29[0], 1)=TRUE ⇒ LOAD344(i29[0], i25[0])≥NonInfC∧LOAD344(i29[0], i25[0])≥COND_LOAD344(>(i29[0], 1), i29[0], i25[0])∧(UIncreasing(COND_LOAD344(>(i29[0], 1), i29[0], i25[0])), ≥))
(3) (i29[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD344(>(i29[0], 1), i29[0], i25[0])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] + [bni_40]i29[0] ≥ 0∧[(-1)bso_41] ≥ 0)
(4) (i29[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD344(>(i29[0], 1), i29[0], i25[0])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] + [bni_40]i29[0] ≥ 0∧[(-1)bso_41] ≥ 0)
(5) (i29[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD344(>(i29[0], 1), i29[0], i25[0])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] + [bni_40]i29[0] ≥ 0∧[(-1)bso_41] ≥ 0)
(6) (i29[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD344(>(i29[0], 1), i29[0], i25[0])), ≥)∧0 = 0∧[(-1)bni_40 + (-1)Bound*bni_40] + [bni_40]i29[0] ≥ 0∧0 = 0∧[(-1)bso_41] ≥ 0)
(7) (i29[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD344(>(i29[0], 1), i29[0], i25[0])), ≥)∧0 = 0∧[bni_40 + (-1)Bound*bni_40] + [bni_40]i29[0] ≥ 0∧0 = 0∧[(-1)bso_41] ≥ 0)
(8) (i25[5]=i25[6]∧i38[5]=i38[6]∧i29[5]=i29[6]∧i38[6]=i29[0]∧+(i25[6], 1)=i25[0]∧>(i29[0], 1)=TRUE∧i29[0]=i29[1]∧i25[0]=i25[1]∧i25[1]=i25[2]∧0=i38[2]∧i29[1]=i29[2]∧i29[1]=i41[2]∧i41[2]=i41[3]∧i38[2]=i38[3]∧i29[2]=i29[3]∧i25[2]=i25[3]∧&&(>(i41[2], 1), >(+(i38[2], 1), 0))=TRUE ⇒ COND_LOAD344(TRUE, i29[1], i25[1])≥NonInfC∧COND_LOAD344(TRUE, i29[1], i25[1])≥LOAD475(i25[1], i29[1], i29[1], 0)∧(UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥))
(9) (>(i29[0], 1)=TRUE ⇒ COND_LOAD344(TRUE, i29[0], +(i25[6], 1))≥NonInfC∧COND_LOAD344(TRUE, i29[0], +(i25[6], 1))≥LOAD475(+(i25[6], 1), i29[0], i29[0], 0)∧(UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥))
(10) (i29[0] + [-2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(11) (i29[0] + [-2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(12) (i29[0] + [-2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(13) (i29[0] + [-2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧0 = 0∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧0 = 0∧[(-1)bso_43] ≥ 0)
(14) (i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧0 = 0∧[bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧0 = 0∧[(-1)bso_43] ≥ 0)
(15) (i25[5]=i25[6]∧i38[5]=i38[6]∧i29[5]=i29[6]∧i38[6]=i29[0]∧+(i25[6], 1)=i25[0]∧>(i29[0], 1)=TRUE∧i29[0]=i29[1]∧i25[0]=i25[1]∧i29[1]=i29[4]∧0=i38[4]∧i29[1]=i41[4]∧i25[1]=i25[4]∧i38[4]=i38[5]1∧i41[4]=i41[5]1∧&&(>(i41[4], 0), <=(i41[4], 1))=TRUE∧i29[4]=i29[5]1∧i25[4]=i25[5]1 ⇒ COND_LOAD344(TRUE, i29[1], i25[1])≥NonInfC∧COND_LOAD344(TRUE, i29[1], i25[1])≥LOAD475(i25[1], i29[1], i29[1], 0)∧(UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥))
(16) (>(i29[0], 1)=TRUE∧>(i29[0], 0)=TRUE∧<=(i29[0], 1)=TRUE ⇒ COND_LOAD344(TRUE, i29[0], +(i25[6], 1))≥NonInfC∧COND_LOAD344(TRUE, i29[0], +(i25[6], 1))≥LOAD475(+(i25[6], 1), i29[0], i29[0], 0)∧(UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥))
(17) (i29[0] + [-2] ≥ 0∧i29[0] + [-1] ≥ 0∧[1] + [-1]i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(18) (i29[0] + [-2] ≥ 0∧i29[0] + [-1] ≥ 0∧[1] + [-1]i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(19) (i29[0] + [-2] ≥ 0∧i29[0] + [-1] ≥ 0∧[1] + [-1]i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(20) (i29[0] + [-2] ≥ 0∧i29[0] + [-1] ≥ 0∧[1] + [-1]i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧0 = 0∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧0 = 0∧[(-1)bso_43] ≥ 0)
(21) (i25[5]=i25[6]∧i38[5]=i38[6]∧i29[5]=i29[6]∧i38[6]=i29[0]∧+(i25[6], 1)=i25[0]∧>(i29[0], 1)=TRUE∧i29[0]=i29[1]∧i25[0]=i25[1]∧i25[1]=i25[7]∧i29[1]=i40[7]∧i29[1]=i29[7]∧0=i38[7]∧i38[7]=i38[8]∧i40[7]=i40[8]∧i25[7]=i25[8]∧i29[7]=i29[8]∧&&(<=(i40[7], 1), >(+(i25[7], 1), 0))=TRUE ⇒ COND_LOAD344(TRUE, i29[1], i25[1])≥NonInfC∧COND_LOAD344(TRUE, i29[1], i25[1])≥LOAD475(i25[1], i29[1], i29[1], 0)∧(UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥))
(22) (>(i29[0], 1)=TRUE∧<=(i29[0], 1)=TRUE∧>(+(+(i25[6], 1), 1), 0)=TRUE ⇒ COND_LOAD344(TRUE, i29[0], +(i25[6], 1))≥NonInfC∧COND_LOAD344(TRUE, i29[0], +(i25[6], 1))≥LOAD475(+(i25[6], 1), i29[0], i29[0], 0)∧(UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥))
(23) (i29[0] + [-2] ≥ 0∧[1] + [-1]i29[0] ≥ 0∧i25[6] + [1] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(24) (i29[0] + [-2] ≥ 0∧[1] + [-1]i29[0] ≥ 0∧i25[6] + [1] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(25) (i29[0] + [-2] ≥ 0∧[1] + [-1]i29[0] ≥ 0∧i25[6] + [1] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(26) (i38[7]=i38[8]∧i40[7]=i40[8]∧i25[7]=i25[8]∧i29[7]=i29[8]∧&&(<=(i40[7], 1), >(+(i25[7], 1), 0))=TRUE∧+(i25[8], 1)=i25[0]∧i38[8]=i29[0]∧>(i29[0], 1)=TRUE∧i29[0]=i29[1]∧i25[0]=i25[1]∧i25[1]=i25[2]∧0=i38[2]∧i29[1]=i29[2]∧i29[1]=i41[2]∧i41[2]=i41[3]∧i38[2]=i38[3]∧i29[2]=i29[3]∧i25[2]=i25[3]∧&&(>(i41[2], 1), >(+(i38[2], 1), 0))=TRUE ⇒ COND_LOAD344(TRUE, i29[1], i25[1])≥NonInfC∧COND_LOAD344(TRUE, i29[1], i25[1])≥LOAD475(i25[1], i29[1], i29[1], 0)∧(UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥))
(27) (>(i29[0], 1)=TRUE∧<=(i40[7], 1)=TRUE∧>(+(i25[7], 1), 0)=TRUE ⇒ COND_LOAD344(TRUE, i29[0], +(i25[7], 1))≥NonInfC∧COND_LOAD344(TRUE, i29[0], +(i25[7], 1))≥LOAD475(+(i25[7], 1), i29[0], i29[0], 0)∧(UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥))
(28) (i29[0] + [-2] ≥ 0∧[1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(29) (i29[0] + [-2] ≥ 0∧[1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(30) (i29[0] + [-2] ≥ 0∧[1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(31) (i29[0] ≥ 0∧[1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(32) (i29[0] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(33) (i38[7]=i38[8]∧i40[7]=i40[8]∧i25[7]=i25[8]∧i29[7]=i29[8]∧&&(<=(i40[7], 1), >(+(i25[7], 1), 0))=TRUE∧+(i25[8], 1)=i25[0]∧i38[8]=i29[0]∧>(i29[0], 1)=TRUE∧i29[0]=i29[1]∧i25[0]=i25[1]∧i29[1]=i29[4]∧0=i38[4]∧i29[1]=i41[4]∧i25[1]=i25[4]∧i38[4]=i38[5]∧i41[4]=i41[5]∧&&(>(i41[4], 0), <=(i41[4], 1))=TRUE∧i29[4]=i29[5]∧i25[4]=i25[5] ⇒ COND_LOAD344(TRUE, i29[1], i25[1])≥NonInfC∧COND_LOAD344(TRUE, i29[1], i25[1])≥LOAD475(i25[1], i29[1], i29[1], 0)∧(UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥))
(34) (>(i29[0], 1)=TRUE∧<=(i40[7], 1)=TRUE∧>(+(i25[7], 1), 0)=TRUE∧>(i29[0], 0)=TRUE∧<=(i29[0], 1)=TRUE ⇒ COND_LOAD344(TRUE, i29[0], +(i25[7], 1))≥NonInfC∧COND_LOAD344(TRUE, i29[0], +(i25[7], 1))≥LOAD475(+(i25[7], 1), i29[0], i29[0], 0)∧(UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥))
(35) (i29[0] + [-2] ≥ 0∧[1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0∧i29[0] + [-1] ≥ 0∧[1] + [-1]i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(36) (i29[0] + [-2] ≥ 0∧[1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0∧i29[0] + [-1] ≥ 0∧[1] + [-1]i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(37) (i29[0] + [-2] ≥ 0∧[1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0∧i29[0] + [-1] ≥ 0∧[1] + [-1]i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(38) (i38[7]=i38[8]∧i40[7]=i40[8]∧i25[7]=i25[8]∧i29[7]=i29[8]∧&&(<=(i40[7], 1), >(+(i25[7], 1), 0))=TRUE∧+(i25[8], 1)=i25[0]∧i38[8]=i29[0]∧>(i29[0], 1)=TRUE∧i29[0]=i29[1]∧i25[0]=i25[1]∧i25[1]=i25[7]1∧i29[1]=i40[7]1∧i29[1]=i29[7]1∧0=i38[7]1∧i38[7]1=i38[8]1∧i40[7]1=i40[8]1∧i25[7]1=i25[8]1∧i29[7]1=i29[8]1∧&&(<=(i40[7]1, 1), >(+(i25[7]1, 1), 0))=TRUE ⇒ COND_LOAD344(TRUE, i29[1], i25[1])≥NonInfC∧COND_LOAD344(TRUE, i29[1], i25[1])≥LOAD475(i25[1], i29[1], i29[1], 0)∧(UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥))
(39) (>(i29[0], 1)=TRUE∧<=(i40[7], 1)=TRUE∧>(+(i25[7], 1), 0)=TRUE∧<=(i29[0], 1)=TRUE∧>(+(+(i25[7], 1), 1), 0)=TRUE ⇒ COND_LOAD344(TRUE, i29[0], +(i25[7], 1))≥NonInfC∧COND_LOAD344(TRUE, i29[0], +(i25[7], 1))≥LOAD475(+(i25[7], 1), i29[0], i29[0], 0)∧(UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥))
(40) (i29[0] + [-2] ≥ 0∧[1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0∧[1] + [-1]i29[0] ≥ 0∧i25[7] + [1] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(41) (i29[0] + [-2] ≥ 0∧[1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0∧[1] + [-1]i29[0] ≥ 0∧i25[7] + [1] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(42) (i29[0] + [-2] ≥ 0∧[1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0∧[1] + [-1]i29[0] ≥ 0∧i25[7] + [1] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i29[0] ≥ 0∧[(-1)bso_43] ≥ 0)
(43) (i41[2]=i41[3]∧i38[2]=i38[3]∧i29[2]=i29[3]∧i25[2]=i25[3]∧&&(>(i41[2], 1), >(+(i38[2], 1), 0))=TRUE ⇒ LOAD475(i25[2], i29[2], i41[2], i38[2])≥NonInfC∧LOAD475(i25[2], i29[2], i41[2], i38[2])≥COND_LOAD475(&&(>(i41[2], 1), >(+(i38[2], 1), 0)), i25[2], i29[2], i41[2], i38[2])∧(UIncreasing(COND_LOAD475(&&(>(i41[2], 1), >(+(i38[2], 1), 0)), i25[2], i29[2], i41[2], i38[2])), ≥))
(44) (>(i41[2], 1)=TRUE∧>(+(i38[2], 1), 0)=TRUE ⇒ LOAD475(i25[2], i29[2], i41[2], i38[2])≥NonInfC∧LOAD475(i25[2], i29[2], i41[2], i38[2])≥COND_LOAD475(&&(>(i41[2], 1), >(+(i38[2], 1), 0)), i25[2], i29[2], i41[2], i38[2])∧(UIncreasing(COND_LOAD475(&&(>(i41[2], 1), >(+(i38[2], 1), 0)), i25[2], i29[2], i41[2], i38[2])), ≥))
(45) (i41[2] + [-2] ≥ 0∧i38[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD475(&&(>(i41[2], 1), >(+(i38[2], 1), 0)), i25[2], i29[2], i41[2], i38[2])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [bni_44]i38[2] + [bni_44]i41[2] ≥ 0∧[(-1)bso_45] ≥ 0)
(46) (i41[2] + [-2] ≥ 0∧i38[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD475(&&(>(i41[2], 1), >(+(i38[2], 1), 0)), i25[2], i29[2], i41[2], i38[2])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [bni_44]i38[2] + [bni_44]i41[2] ≥ 0∧[(-1)bso_45] ≥ 0)
(47) (i41[2] + [-2] ≥ 0∧i38[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD475(&&(>(i41[2], 1), >(+(i38[2], 1), 0)), i25[2], i29[2], i41[2], i38[2])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [bni_44]i38[2] + [bni_44]i41[2] ≥ 0∧[(-1)bso_45] ≥ 0)
(48) (i41[2] + [-2] ≥ 0∧i38[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD475(&&(>(i41[2], 1), >(+(i38[2], 1), 0)), i25[2], i29[2], i41[2], i38[2])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_44 + (-1)Bound*bni_44] + [bni_44]i38[2] + [bni_44]i41[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_45] ≥ 0)
(49) (i41[2] ≥ 0∧i38[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD475(&&(>(i41[2], 1), >(+(i38[2], 1), 0)), i25[2], i29[2], i41[2], i38[2])), ≥)∧0 = 0∧0 = 0∧[bni_44 + (-1)Bound*bni_44] + [bni_44]i38[2] + [bni_44]i41[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_45] ≥ 0)
(50) (>(i29[0], 1)=TRUE∧i29[0]=i29[1]∧i25[0]=i25[1]∧i25[1]=i25[2]∧0=i38[2]∧i29[1]=i29[2]∧i29[1]=i41[2]∧i41[2]=i41[3]∧i38[2]=i38[3]∧i29[2]=i29[3]∧i25[2]=i25[3]∧&&(>(i41[2], 1), >(+(i38[2], 1), 0))=TRUE∧i29[3]=i29[2]1∧-(i41[3], 2)=i41[2]1∧i25[3]=i25[2]1∧+(i38[3], 1)=i38[2]1∧i41[2]1=i41[3]1∧i38[2]1=i38[3]1∧i29[2]1=i29[3]1∧i25[2]1=i25[3]1∧&&(>(i41[2]1, 1), >(+(i38[2]1, 1), 0))=TRUE ⇒ COND_LOAD475(TRUE, i25[3], i29[3], i41[3], i38[3])≥NonInfC∧COND_LOAD475(TRUE, i25[3], i29[3], i41[3], i38[3])≥LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))∧(UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥))
(51) (>(i29[0], 1)=TRUE∧>(-(i29[0], 2), 1)=TRUE ⇒ COND_LOAD475(TRUE, i25[0], i29[0], i29[0], 0)≥NonInfC∧COND_LOAD475(TRUE, i25[0], i29[0], i29[0], 0)≥LOAD475(i25[0], i29[0], -(i29[0], 2), +(0, 1))∧(UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥))
(52) (i29[0] + [-2] ≥ 0∧i29[0] + [-4] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]i29[0] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(53) (i29[0] + [-2] ≥ 0∧i29[0] + [-4] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]i29[0] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(54) (i29[0] + [-2] ≥ 0∧i29[0] + [-4] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]i29[0] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(55) (i29[0] + [-2] ≥ 0∧i29[0] + [-4] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧0 = 0∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]i29[0] ≥ 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(56) (i29[0] ≥ 0∧[-2] + i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧0 = 0∧[bni_46 + (-1)Bound*bni_46] + [bni_46]i29[0] ≥ 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(57) ([2] + i29[0] ≥ 0∧i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧0 = 0∧[(3)bni_46 + (-1)Bound*bni_46] + [bni_46]i29[0] ≥ 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(58) (>(i29[0], 1)=TRUE∧i29[0]=i29[1]∧i25[0]=i25[1]∧i25[1]=i25[2]∧0=i38[2]∧i29[1]=i29[2]∧i29[1]=i41[2]∧i41[2]=i41[3]∧i38[2]=i38[3]∧i29[2]=i29[3]∧i25[2]=i25[3]∧&&(>(i41[2], 1), >(+(i38[2], 1), 0))=TRUE∧i25[3]=i25[4]∧+(i38[3], 1)=i38[4]∧i29[3]=i29[4]∧-(i41[3], 2)=i41[4]∧i38[4]=i38[5]∧i41[4]=i41[5]∧&&(>(i41[4], 0), <=(i41[4], 1))=TRUE∧i29[4]=i29[5]∧i25[4]=i25[5] ⇒ COND_LOAD475(TRUE, i25[3], i29[3], i41[3], i38[3])≥NonInfC∧COND_LOAD475(TRUE, i25[3], i29[3], i41[3], i38[3])≥LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))∧(UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥))
(59) (>(i29[0], 1)=TRUE∧>(-(i29[0], 2), 0)=TRUE∧<=(-(i29[0], 2), 1)=TRUE ⇒ COND_LOAD475(TRUE, i25[0], i29[0], i29[0], 0)≥NonInfC∧COND_LOAD475(TRUE, i25[0], i29[0], i29[0], 0)≥LOAD475(i25[0], i29[0], -(i29[0], 2), +(0, 1))∧(UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥))
(60) (i29[0] + [-2] ≥ 0∧i29[0] + [-3] ≥ 0∧[3] + [-1]i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]i29[0] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(61) (i29[0] + [-2] ≥ 0∧i29[0] + [-3] ≥ 0∧[3] + [-1]i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]i29[0] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(62) (i29[0] + [-2] ≥ 0∧i29[0] + [-3] ≥ 0∧[3] + [-1]i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]i29[0] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(63) (i29[0] + [-2] ≥ 0∧i29[0] + [-3] ≥ 0∧[3] + [-1]i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧0 = 0∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]i29[0] ≥ 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(64) (i29[0] ≥ 0∧[-1] + i29[0] ≥ 0∧[1] + [-1]i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧0 = 0∧[bni_46 + (-1)Bound*bni_46] + [bni_46]i29[0] ≥ 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(65) ([1] + i29[0] ≥ 0∧i29[0] ≥ 0∧[-1]i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧0 = 0∧[(2)bni_46 + (-1)Bound*bni_46] + [bni_46]i29[0] ≥ 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(66) ([1] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧0 = 0∧[(2)bni_46 + (-1)Bound*bni_46] ≥ 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(67) (>(i29[0], 1)=TRUE∧i29[0]=i29[1]∧i25[0]=i25[1]∧i25[1]=i25[2]∧0=i38[2]∧i29[1]=i29[2]∧i29[1]=i41[2]∧i41[2]=i41[3]∧i38[2]=i38[3]∧i29[2]=i29[3]∧i25[2]=i25[3]∧&&(>(i41[2], 1), >(+(i38[2], 1), 0))=TRUE∧-(i41[3], 2)=i40[7]∧i25[3]=i25[7]∧+(i38[3], 1)=i38[7]∧i29[3]=i29[7]∧i38[7]=i38[8]∧i40[7]=i40[8]∧i25[7]=i25[8]∧i29[7]=i29[8]∧&&(<=(i40[7], 1), >(+(i25[7], 1), 0))=TRUE ⇒ COND_LOAD475(TRUE, i25[3], i29[3], i41[3], i38[3])≥NonInfC∧COND_LOAD475(TRUE, i25[3], i29[3], i41[3], i38[3])≥LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))∧(UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥))
(68) (>(i29[0], 1)=TRUE∧<=(-(i29[0], 2), 1)=TRUE∧>(+(i25[7], 1), 0)=TRUE ⇒ COND_LOAD475(TRUE, i25[7], i29[0], i29[0], 0)≥NonInfC∧COND_LOAD475(TRUE, i25[7], i29[0], i29[0], 0)≥LOAD475(i25[7], i29[0], -(i29[0], 2), +(0, 1))∧(UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥))
(69) (i29[0] + [-2] ≥ 0∧[3] + [-1]i29[0] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]i29[0] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(70) (i29[0] + [-2] ≥ 0∧[3] + [-1]i29[0] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]i29[0] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(71) (i29[0] + [-2] ≥ 0∧[3] + [-1]i29[0] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]i29[0] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(72) (i29[0] ≥ 0∧[1] + [-1]i29[0] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))), ≥)∧[bni_46 + (-1)Bound*bni_46] + [bni_46]i29[0] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(73) (i41[2]=i41[3]∧i38[2]=i38[3]∧i29[2]=i29[3]∧i25[2]=i25[3]∧&&(>(i41[2], 1), >(+(i38[2], 1), 0))=TRUE∧i29[3]=i29[2]1∧-(i41[3], 2)=i41[2]1∧i25[3]=i25[2]1∧+(i38[3], 1)=i38[2]1∧i41[2]1=i41[3]1∧i38[2]1=i38[3]1∧i29[2]1=i29[3]1∧i25[2]1=i25[3]1∧&&(>(i41[2]1, 1), >(+(i38[2]1, 1), 0))=TRUE∧i29[3]1=i29[2]2∧-(i41[3]1, 2)=i41[2]2∧i25[3]1=i25[2]2∧+(i38[3]1, 1)=i38[2]2∧i41[2]2=i41[3]2∧i38[2]2=i38[3]2∧i29[2]2=i29[3]2∧i25[2]2=i25[3]2∧&&(>(i41[2]2, 1), >(+(i38[2]2, 1), 0))=TRUE ⇒ COND_LOAD475(TRUE, i25[3]1, i29[3]1, i41[3]1, i38[3]1)≥NonInfC∧COND_LOAD475(TRUE, i25[3]1, i29[3]1, i41[3]1, i38[3]1)≥LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))∧(UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥))
(74) (>(i41[2], 1)=TRUE∧>(+(i38[2], 1), 0)=TRUE∧>(-(i41[2], 2), 1)=TRUE∧>(+(+(i38[2], 1), 1), 0)=TRUE∧>(-(-(i41[2], 2), 2), 1)=TRUE∧>(+(+(+(i38[2], 1), 1), 1), 0)=TRUE ⇒ COND_LOAD475(TRUE, i25[2], i29[2], -(i41[2], 2), +(i38[2], 1))≥NonInfC∧COND_LOAD475(TRUE, i25[2], i29[2], -(i41[2], 2), +(i38[2], 1))≥LOAD475(i25[2], i29[2], -(-(i41[2], 2), 2), +(+(i38[2], 1), 1))∧(UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥))
(75) (i41[2] + [-2] ≥ 0∧i38[2] ≥ 0∧i41[2] + [-4] ≥ 0∧i38[2] + [1] ≥ 0∧i41[2] + [-6] ≥ 0∧i38[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(76) (i41[2] + [-2] ≥ 0∧i38[2] ≥ 0∧i41[2] + [-4] ≥ 0∧i38[2] + [1] ≥ 0∧i41[2] + [-6] ≥ 0∧i38[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(77) (i41[2] + [-2] ≥ 0∧i38[2] ≥ 0∧i41[2] + [-4] ≥ 0∧i38[2] + [1] ≥ 0∧i41[2] + [-6] ≥ 0∧i38[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(78) (i41[2] + [-2] ≥ 0∧i38[2] ≥ 0∧i41[2] + [-4] ≥ 0∧i38[2] + [1] ≥ 0∧i41[2] + [-6] ≥ 0∧i38[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(79) (i41[2] ≥ 0∧i38[2] ≥ 0∧[-2] + i41[2] ≥ 0∧i38[2] + [1] ≥ 0∧[-4] + i41[2] ≥ 0∧i38[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(80) ([2] + i41[2] ≥ 0∧i38[2] ≥ 0∧i41[2] ≥ 0∧i38[2] + [1] ≥ 0∧[-2] + i41[2] ≥ 0∧i38[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(2)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(81) ([4] + i41[2] ≥ 0∧i38[2] ≥ 0∧[2] + i41[2] ≥ 0∧i38[2] + [1] ≥ 0∧i41[2] ≥ 0∧i38[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(4)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(82) ([4] + i41[2] ≥ 0∧i38[2] ≥ 0∧[2] + i41[2] ≥ 0∧i38[2] + [1] ≥ 0∧i41[2] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(4)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(83) (i41[2]=i41[3]∧i38[2]=i38[3]∧i29[2]=i29[3]∧i25[2]=i25[3]∧&&(>(i41[2], 1), >(+(i38[2], 1), 0))=TRUE∧i29[3]=i29[2]1∧-(i41[3], 2)=i41[2]1∧i25[3]=i25[2]1∧+(i38[3], 1)=i38[2]1∧i41[2]1=i41[3]1∧i38[2]1=i38[3]1∧i29[2]1=i29[3]1∧i25[2]1=i25[3]1∧&&(>(i41[2]1, 1), >(+(i38[2]1, 1), 0))=TRUE∧i25[3]1=i25[4]∧+(i38[3]1, 1)=i38[4]∧i29[3]1=i29[4]∧-(i41[3]1, 2)=i41[4]∧i38[4]=i38[5]∧i41[4]=i41[5]∧&&(>(i41[4], 0), <=(i41[4], 1))=TRUE∧i29[4]=i29[5]∧i25[4]=i25[5] ⇒ COND_LOAD475(TRUE, i25[3]1, i29[3]1, i41[3]1, i38[3]1)≥NonInfC∧COND_LOAD475(TRUE, i25[3]1, i29[3]1, i41[3]1, i38[3]1)≥LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))∧(UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥))
(84) (>(i41[2], 1)=TRUE∧>(+(i38[2], 1), 0)=TRUE∧>(-(i41[2], 2), 1)=TRUE∧>(+(+(i38[2], 1), 1), 0)=TRUE∧>(-(-(i41[2], 2), 2), 0)=TRUE∧<=(-(-(i41[2], 2), 2), 1)=TRUE ⇒ COND_LOAD475(TRUE, i25[2], i29[2], -(i41[2], 2), +(i38[2], 1))≥NonInfC∧COND_LOAD475(TRUE, i25[2], i29[2], -(i41[2], 2), +(i38[2], 1))≥LOAD475(i25[2], i29[2], -(-(i41[2], 2), 2), +(+(i38[2], 1), 1))∧(UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥))
(85) (i41[2] + [-2] ≥ 0∧i38[2] ≥ 0∧i41[2] + [-4] ≥ 0∧i38[2] + [1] ≥ 0∧i41[2] + [-5] ≥ 0∧[5] + [-1]i41[2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(86) (i41[2] + [-2] ≥ 0∧i38[2] ≥ 0∧i41[2] + [-4] ≥ 0∧i38[2] + [1] ≥ 0∧i41[2] + [-5] ≥ 0∧[5] + [-1]i41[2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(87) (i41[2] + [-2] ≥ 0∧i38[2] ≥ 0∧i41[2] + [-4] ≥ 0∧i38[2] + [1] ≥ 0∧i41[2] + [-5] ≥ 0∧[5] + [-1]i41[2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(88) (i41[2] + [-2] ≥ 0∧i38[2] ≥ 0∧i41[2] + [-4] ≥ 0∧i38[2] + [1] ≥ 0∧i41[2] + [-5] ≥ 0∧[5] + [-1]i41[2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(89) (i41[2] ≥ 0∧i38[2] ≥ 0∧[-2] + i41[2] ≥ 0∧i38[2] + [1] ≥ 0∧[-3] + i41[2] ≥ 0∧[3] + [-1]i41[2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(90) ([2] + i41[2] ≥ 0∧i38[2] ≥ 0∧i41[2] ≥ 0∧i38[2] + [1] ≥ 0∧[-1] + i41[2] ≥ 0∧[1] + [-1]i41[2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(2)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(91) ([3] + i41[2] ≥ 0∧i38[2] ≥ 0∧[1] + i41[2] ≥ 0∧i38[2] + [1] ≥ 0∧i41[2] ≥ 0∧[-1]i41[2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(3)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(92) ([3] ≥ 0∧i38[2] ≥ 0∧[1] ≥ 0∧i38[2] + [1] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(3)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(93) (i38[2] ≥ 0∧[1] ≥ 0∧i38[2] + [1] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧0 = 0∧0 = 0∧[(3)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(94) (i41[2]=i41[3]∧i38[2]=i38[3]∧i29[2]=i29[3]∧i25[2]=i25[3]∧&&(>(i41[2], 1), >(+(i38[2], 1), 0))=TRUE∧i29[3]=i29[2]1∧-(i41[3], 2)=i41[2]1∧i25[3]=i25[2]1∧+(i38[3], 1)=i38[2]1∧i41[2]1=i41[3]1∧i38[2]1=i38[3]1∧i29[2]1=i29[3]1∧i25[2]1=i25[3]1∧&&(>(i41[2]1, 1), >(+(i38[2]1, 1), 0))=TRUE∧-(i41[3]1, 2)=i40[7]∧i25[3]1=i25[7]∧+(i38[3]1, 1)=i38[7]∧i29[3]1=i29[7]∧i38[7]=i38[8]∧i40[7]=i40[8]∧i25[7]=i25[8]∧i29[7]=i29[8]∧&&(<=(i40[7], 1), >(+(i25[7], 1), 0))=TRUE ⇒ COND_LOAD475(TRUE, i25[3]1, i29[3]1, i41[3]1, i38[3]1)≥NonInfC∧COND_LOAD475(TRUE, i25[3]1, i29[3]1, i41[3]1, i38[3]1)≥LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))∧(UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥))
(95) (>(i41[2], 1)=TRUE∧>(+(i38[2], 1), 0)=TRUE∧>(-(i41[2], 2), 1)=TRUE∧>(+(+(i38[2], 1), 1), 0)=TRUE∧<=(-(-(i41[2], 2), 2), 1)=TRUE∧>(+(i25[7], 1), 0)=TRUE ⇒ COND_LOAD475(TRUE, i25[7], i29[2], -(i41[2], 2), +(i38[2], 1))≥NonInfC∧COND_LOAD475(TRUE, i25[7], i29[2], -(i41[2], 2), +(i38[2], 1))≥LOAD475(i25[7], i29[2], -(-(i41[2], 2), 2), +(+(i38[2], 1), 1))∧(UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥))
(96) (i41[2] + [-2] ≥ 0∧i38[2] ≥ 0∧i41[2] + [-4] ≥ 0∧i38[2] + [1] ≥ 0∧[5] + [-1]i41[2] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(97) (i41[2] + [-2] ≥ 0∧i38[2] ≥ 0∧i41[2] + [-4] ≥ 0∧i38[2] + [1] ≥ 0∧[5] + [-1]i41[2] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(98) (i41[2] + [-2] ≥ 0∧i38[2] ≥ 0∧i41[2] + [-4] ≥ 0∧i38[2] + [1] ≥ 0∧[5] + [-1]i41[2] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧[1 + (-1)bso_47] ≥ 0)
(99) (i41[2] + [-2] ≥ 0∧i38[2] ≥ 0∧i41[2] + [-4] ≥ 0∧i38[2] + [1] ≥ 0∧[5] + [-1]i41[2] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧0 = 0∧[(-2)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(100) (i41[2] ≥ 0∧i38[2] ≥ 0∧[-2] + i41[2] ≥ 0∧i38[2] + [1] ≥ 0∧[3] + [-1]i41[2] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧0 = 0∧[(-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(101) ([2] + i41[2] ≥ 0∧i38[2] ≥ 0∧i41[2] ≥ 0∧i38[2] + [1] ≥ 0∧[1] + [-1]i41[2] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[3]1, i29[3]1, -(i41[3]1, 2), +(i38[3]1, 1))), ≥)∧0 = 0∧[(2)bni_46 + (-1)Bound*bni_46] + [bni_46]i38[2] + [bni_46]i41[2] ≥ 0∧0 = 0∧[1 + (-1)bso_47] ≥ 0)
(102) (i38[4]=i38[5]∧i41[4]=i41[5]∧&&(>(i41[4], 0), <=(i41[4], 1))=TRUE∧i29[4]=i29[5]∧i25[4]=i25[5] ⇒ LOAD475(i25[4], i29[4], i41[4], i38[4])≥NonInfC∧LOAD475(i25[4], i29[4], i41[4], i38[4])≥COND_LOAD4751(&&(>(i41[4], 0), <=(i41[4], 1)), i25[4], i29[4], i41[4], i38[4])∧(UIncreasing(COND_LOAD4751(&&(>(i41[4], 0), <=(i41[4], 1)), i25[4], i29[4], i41[4], i38[4])), ≥))
(103) (>(i41[4], 0)=TRUE∧<=(i41[4], 1)=TRUE ⇒ LOAD475(i25[4], i29[4], i41[4], i38[4])≥NonInfC∧LOAD475(i25[4], i29[4], i41[4], i38[4])≥COND_LOAD4751(&&(>(i41[4], 0), <=(i41[4], 1)), i25[4], i29[4], i41[4], i38[4])∧(UIncreasing(COND_LOAD4751(&&(>(i41[4], 0), <=(i41[4], 1)), i25[4], i29[4], i41[4], i38[4])), ≥))
(104) (i41[4] + [-1] ≥ 0∧[1] + [-1]i41[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD4751(&&(>(i41[4], 0), <=(i41[4], 1)), i25[4], i29[4], i41[4], i38[4])), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [bni_48]i38[4] + [bni_48]i41[4] ≥ 0∧[(-1)bso_49] + i41[4] ≥ 0)
(105) (i41[4] + [-1] ≥ 0∧[1] + [-1]i41[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD4751(&&(>(i41[4], 0), <=(i41[4], 1)), i25[4], i29[4], i41[4], i38[4])), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [bni_48]i38[4] + [bni_48]i41[4] ≥ 0∧[(-1)bso_49] + i41[4] ≥ 0)
(106) (i41[4] + [-1] ≥ 0∧[1] + [-1]i41[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD4751(&&(>(i41[4], 0), <=(i41[4], 1)), i25[4], i29[4], i41[4], i38[4])), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [bni_48]i38[4] + [bni_48]i41[4] ≥ 0∧[(-1)bso_49] + i41[4] ≥ 0)
(107) (i41[4] + [-1] ≥ 0∧[1] + [-1]i41[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD4751(&&(>(i41[4], 0), <=(i41[4], 1)), i25[4], i29[4], i41[4], i38[4])), ≥)∧[bni_48] = 0∧0 = 0∧0 = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [bni_48]i41[4] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_49] + i41[4] ≥ 0)
(108) (i41[4] ≥ 0∧[-1]i41[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD4751(&&(>(i41[4], 0), <=(i41[4], 1)), i25[4], i29[4], i41[4], i38[4])), ≥)∧[bni_48] = 0∧0 = 0∧0 = 0∧[(-1)Bound*bni_48] + [bni_48]i41[4] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_49] + i41[4] ≥ 0)
(109) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_LOAD4751(&&(>(i41[4], 0), <=(i41[4], 1)), i25[4], i29[4], i41[4], i38[4])), ≥)∧[bni_48] = 0∧0 = 0∧0 = 0∧[(-1)Bound*bni_48] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_49] ≥ 0)
(110) (i25[5]=i25[6]∧i38[5]=i38[6]∧i29[5]=i29[6] ⇒ COND_LOAD4751(TRUE, i25[5], i29[5], i41[5], i38[5])≥NonInfC∧COND_LOAD4751(TRUE, i25[5], i29[5], i41[5], i38[5])≥LOAD487(i25[5], i29[5], i38[5])∧(UIncreasing(LOAD487(i25[5], i29[5], i38[5])), ≥))
(111) (COND_LOAD4751(TRUE, i25[5], i29[5], i41[5], i38[5])≥NonInfC∧COND_LOAD4751(TRUE, i25[5], i29[5], i41[5], i38[5])≥LOAD487(i25[5], i29[5], i38[5])∧(UIncreasing(LOAD487(i25[5], i29[5], i38[5])), ≥))
(112) ((UIncreasing(LOAD487(i25[5], i29[5], i38[5])), ≥)∧[(-1)bso_51] ≥ 0)
(113) ((UIncreasing(LOAD487(i25[5], i29[5], i38[5])), ≥)∧[(-1)bso_51] ≥ 0)
(114) ((UIncreasing(LOAD487(i25[5], i29[5], i38[5])), ≥)∧[(-1)bso_51] ≥ 0)
(115) ((UIncreasing(LOAD487(i25[5], i29[5], i38[5])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_51] ≥ 0)
(116) (i29[1]=i29[4]∧0=i38[4]∧i29[1]=i41[4]∧i25[1]=i25[4]∧i38[4]=i38[5]∧i41[4]=i41[5]∧&&(>(i41[4], 0), <=(i41[4], 1))=TRUE∧i29[4]=i29[5]∧i25[4]=i25[5]∧i25[5]=i25[6]∧i38[5]=i38[6]∧i29[5]=i29[6]∧i38[6]=i29[0]∧+(i25[6], 1)=i25[0]∧>(i29[0], 1)=TRUE∧i29[0]=i29[1]1∧i25[0]=i25[1]1 ⇒ LOAD487(i25[6], i29[6], i38[6])≥NonInfC∧LOAD487(i25[6], i29[6], i38[6])≥LOAD344(i38[6], +(i25[6], 1))∧(UIncreasing(LOAD344(i38[6], +(i25[6], 1))), ≥))
(117) (i25[3]=i25[4]∧+(i38[3], 1)=i38[4]∧i29[3]=i29[4]∧-(i41[3], 2)=i41[4]∧i38[4]=i38[5]∧i41[4]=i41[5]∧&&(>(i41[4], 0), <=(i41[4], 1))=TRUE∧i29[4]=i29[5]∧i25[4]=i25[5]∧i25[5]=i25[6]∧i38[5]=i38[6]∧i29[5]=i29[6]∧i38[6]=i29[0]∧+(i25[6], 1)=i25[0]∧>(i29[0], 1)=TRUE∧i29[0]=i29[1]∧i25[0]=i25[1] ⇒ LOAD487(i25[6], i29[6], i38[6])≥NonInfC∧LOAD487(i25[6], i29[6], i38[6])≥LOAD344(i38[6], +(i25[6], 1))∧(UIncreasing(LOAD344(i38[6], +(i25[6], 1))), ≥))
(118) (>(+(i38[3], 1), 1)=TRUE∧>(-(i41[3], 2), 0)=TRUE∧<=(-(i41[3], 2), 1)=TRUE ⇒ LOAD487(i25[3], i29[3], +(i38[3], 1))≥NonInfC∧LOAD487(i25[3], i29[3], +(i38[3], 1))≥LOAD344(+(i38[3], 1), +(i25[3], 1))∧(UIncreasing(LOAD344(i38[6], +(i25[6], 1))), ≥))
(119) (i38[3] + [-1] ≥ 0∧i41[3] + [-3] ≥ 0∧[3] + [-1]i41[3] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[6], +(i25[6], 1))), ≥)∧[(-1)Bound*bni_52] + [bni_52]i38[3] ≥ 0∧[(-1)bso_53] ≥ 0)
(120) (i38[3] + [-1] ≥ 0∧i41[3] + [-3] ≥ 0∧[3] + [-1]i41[3] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[6], +(i25[6], 1))), ≥)∧[(-1)Bound*bni_52] + [bni_52]i38[3] ≥ 0∧[(-1)bso_53] ≥ 0)
(121) (i38[3] + [-1] ≥ 0∧i41[3] + [-3] ≥ 0∧[3] + [-1]i41[3] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[6], +(i25[6], 1))), ≥)∧[(-1)Bound*bni_52] + [bni_52]i38[3] ≥ 0∧[(-1)bso_53] ≥ 0)
(122) (i38[3] + [-1] ≥ 0∧i41[3] + [-3] ≥ 0∧[3] + [-1]i41[3] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[6], +(i25[6], 1))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_52] + [bni_52]i38[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_53] ≥ 0)
(123) (i38[3] ≥ 0∧i41[3] + [-3] ≥ 0∧[3] + [-1]i41[3] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[6], +(i25[6], 1))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_52 + bni_52] + [bni_52]i38[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_53] ≥ 0)
(124) (i38[3] ≥ 0∧[3] + [-1]i41[3] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[6], +(i25[6], 1))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_52 + bni_52] + [bni_52]i38[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_53] ≥ 0)
(125) (i38[7]=i38[8]∧i40[7]=i40[8]∧i25[7]=i25[8]∧i29[7]=i29[8]∧&&(<=(i40[7], 1), >(+(i25[7], 1), 0))=TRUE ⇒ LOAD475(i25[7], i29[7], i40[7], i38[7])≥NonInfC∧LOAD475(i25[7], i29[7], i40[7], i38[7])≥COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])∧(UIncreasing(COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])), ≥))
(126) (<=(i40[7], 1)=TRUE∧>(+(i25[7], 1), 0)=TRUE ⇒ LOAD475(i25[7], i29[7], i40[7], i38[7])≥NonInfC∧LOAD475(i25[7], i29[7], i40[7], i38[7])≥COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])∧(UIncreasing(COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])), ≥))
(127) ([1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])), ≥)∧[(-1)bni_54 + (-1)Bound*bni_54] + [bni_54]i38[7] + [bni_54]i40[7] ≥ 0∧[(-1)bso_55] ≥ 0)
(128) ([1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])), ≥)∧[(-1)bni_54 + (-1)Bound*bni_54] + [bni_54]i38[7] + [bni_54]i40[7] ≥ 0∧[(-1)bso_55] ≥ 0)
(129) ([1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])), ≥)∧[(-1)bni_54 + (-1)Bound*bni_54] + [bni_54]i38[7] + [bni_54]i40[7] ≥ 0∧[(-1)bso_55] ≥ 0)
(130) ([1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])), ≥)∧[bni_54] = 0∧0 = 0∧[(-1)bni_54 + (-1)Bound*bni_54] + [bni_54]i40[7] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_55] ≥ 0)
(131) ([1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0∧i40[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])), ≥)∧[bni_54] = 0∧0 = 0∧[(-1)bni_54 + (-1)Bound*bni_54] + [bni_54]i40[7] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_55] ≥ 0)
(132) ([1] + i40[7] ≥ 0∧i25[7] ≥ 0∧i40[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])), ≥)∧[bni_54] = 0∧0 = 0∧[(-1)bni_54 + (-1)Bound*bni_54] + [(-1)bni_54]i40[7] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_55] ≥ 0)
(133) (>(i29[0], 1)=TRUE∧i29[0]=i29[1]∧i25[0]=i25[1]∧i25[1]=i25[7]∧i29[1]=i40[7]∧i29[1]=i29[7]∧0=i38[7]∧i38[7]=i38[8]∧i40[7]=i40[8]∧i25[7]=i25[8]∧i29[7]=i29[8]∧&&(<=(i40[7], 1), >(+(i25[7], 1), 0))=TRUE∧+(i25[8], 1)=i25[0]1∧i38[8]=i29[0]1∧>(i29[0]1, 1)=TRUE∧i29[0]1=i29[1]1∧i25[0]1=i25[1]1 ⇒ COND_LOAD4752(TRUE, i25[8], i29[8], i40[8], i38[8])≥NonInfC∧COND_LOAD4752(TRUE, i25[8], i29[8], i40[8], i38[8])≥LOAD344(i38[8], +(i25[8], 1))∧(UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥))
(134) (i41[2]=i41[3]∧i38[2]=i38[3]∧i29[2]=i29[3]∧i25[2]=i25[3]∧&&(>(i41[2], 1), >(+(i38[2], 1), 0))=TRUE∧-(i41[3], 2)=i40[7]∧i25[3]=i25[7]∧+(i38[3], 1)=i38[7]∧i29[3]=i29[7]∧i38[7]=i38[8]∧i40[7]=i40[8]∧i25[7]=i25[8]∧i29[7]=i29[8]∧&&(<=(i40[7], 1), >(+(i25[7], 1), 0))=TRUE∧+(i25[8], 1)=i25[0]∧i38[8]=i29[0]∧>(i29[0], 1)=TRUE∧i29[0]=i29[1]∧i25[0]=i25[1] ⇒ COND_LOAD4752(TRUE, i25[8], i29[8], i40[8], i38[8])≥NonInfC∧COND_LOAD4752(TRUE, i25[8], i29[8], i40[8], i38[8])≥LOAD344(i38[8], +(i25[8], 1))∧(UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥))
(135) (>(+(i38[2], 1), 1)=TRUE∧>(i41[2], 1)=TRUE∧>(+(i38[2], 1), 0)=TRUE∧<=(-(i41[2], 2), 1)=TRUE∧>(+(i25[7], 1), 0)=TRUE ⇒ COND_LOAD4752(TRUE, i25[7], i29[2], -(i41[2], 2), +(i38[2], 1))≥NonInfC∧COND_LOAD4752(TRUE, i25[7], i29[2], -(i41[2], 2), +(i38[2], 1))≥LOAD344(+(i38[2], 1), +(i25[7], 1))∧(UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥))
(136) (i38[2] + [-1] ≥ 0∧i41[2] + [-2] ≥ 0∧i38[2] ≥ 0∧[3] + [-1]i41[2] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥)∧[(-2)bni_56 + (-1)Bound*bni_56] + [bni_56]i38[2] + [bni_56]i41[2] ≥ 0∧[-2 + (-1)bso_57] + i41[2] ≥ 0)
(137) (i38[2] + [-1] ≥ 0∧i41[2] + [-2] ≥ 0∧i38[2] ≥ 0∧[3] + [-1]i41[2] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥)∧[(-2)bni_56 + (-1)Bound*bni_56] + [bni_56]i38[2] + [bni_56]i41[2] ≥ 0∧[-2 + (-1)bso_57] + i41[2] ≥ 0)
(138) (i38[2] + [-1] ≥ 0∧i41[2] + [-2] ≥ 0∧i38[2] ≥ 0∧[3] + [-1]i41[2] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥)∧[(-2)bni_56 + (-1)Bound*bni_56] + [bni_56]i38[2] + [bni_56]i41[2] ≥ 0∧[-2 + (-1)bso_57] + i41[2] ≥ 0)
(139) (i38[2] + [-1] ≥ 0∧i41[2] + [-2] ≥ 0∧i38[2] ≥ 0∧[3] + [-1]i41[2] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥)∧0 = 0∧[(-2)bni_56 + (-1)Bound*bni_56] + [bni_56]i38[2] + [bni_56]i41[2] ≥ 0∧0 = 0∧[-2 + (-1)bso_57] + i41[2] ≥ 0)
(140) (i38[2] ≥ 0∧i41[2] + [-2] ≥ 0∧[1] + i38[2] ≥ 0∧[3] + [-1]i41[2] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥)∧0 = 0∧[(-1)bni_56 + (-1)Bound*bni_56] + [bni_56]i38[2] + [bni_56]i41[2] ≥ 0∧0 = 0∧[-2 + (-1)bso_57] + i41[2] ≥ 0)
(141) (i38[2] ≥ 0∧i41[2] ≥ 0∧[1] + i38[2] ≥ 0∧[1] + [-1]i41[2] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥)∧0 = 0∧[bni_56 + (-1)Bound*bni_56] + [bni_56]i38[2] + [bni_56]i41[2] ≥ 0∧0 = 0∧[(-1)bso_57] + i41[2] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD344(x1, x2)) = [-1] + x1
POL(COND_LOAD344(x1, x2, x3)) = [-1] + x2
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(LOAD475(x1, x2, x3, x4)) = [-1] + x4 + x3
POL(0) = 0
POL(COND_LOAD475(x1, x2, x3, x4, x5)) = [-1] + x5 + x4 + [-1]x1
POL(&&(x1, x2)) = 0
POL(+(x1, x2)) = x1 + x2
POL(-(x1, x2)) = x1 + [-1]x2
POL(2) = [2]
POL(COND_LOAD4751(x1, x2, x3, x4, x5)) = [-1] + x5 + [-1]x1
POL(<=(x1, x2)) = [-1]
POL(LOAD487(x1, x2, x3)) = [-1] + x3
POL(COND_LOAD4752(x1, x2, x3, x4, x5)) = [-1] + x5 + x4 + [-1]x1
COND_LOAD475(TRUE, i25[3], i29[3], i41[3], i38[3]) → LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))
LOAD475(i25[4], i29[4], i41[4], i38[4]) → COND_LOAD4751(&&(>(i41[4], 0), <=(i41[4], 1)), i25[4], i29[4], i41[4], i38[4])
LOAD487(i25[6], i29[6], i38[6]) → LOAD344(i38[6], +(i25[6], 1))
LOAD344(i29[0], i25[0]) → COND_LOAD344(>(i29[0], 1), i29[0], i25[0])
COND_LOAD344(TRUE, i29[1], i25[1]) → LOAD475(i25[1], i29[1], i29[1], 0)
LOAD475(i25[2], i29[2], i41[2], i38[2]) → COND_LOAD475(&&(>(i41[2], 1), >(+(i38[2], 1), 0)), i25[2], i29[2], i41[2], i38[2])
COND_LOAD475(TRUE, i25[3], i29[3], i41[3], i38[3]) → LOAD475(i25[3], i29[3], -(i41[3], 2), +(i38[3], 1))
LOAD487(i25[6], i29[6], i38[6]) → LOAD344(i38[6], +(i25[6], 1))
COND_LOAD4752(TRUE, i25[8], i29[8], i40[8], i38[8]) → LOAD344(i38[8], +(i25[8], 1))
LOAD344(i29[0], i25[0]) → COND_LOAD344(>(i29[0], 1), i29[0], i25[0])
COND_LOAD344(TRUE, i29[1], i25[1]) → LOAD475(i25[1], i29[1], i29[1], 0)
LOAD475(i25[2], i29[2], i41[2], i38[2]) → COND_LOAD475(&&(>(i41[2], 1), >(+(i38[2], 1), 0)), i25[2], i29[2], i41[2], i38[2])
COND_LOAD4751(TRUE, i25[5], i29[5], i41[5], i38[5]) → LOAD487(i25[5], i29[5], i38[5])
LOAD475(i25[7], i29[7], i40[7], i38[7]) → COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])
COND_LOAD4752(TRUE, i25[8], i29[8], i40[8], i38[8]) → LOAD344(i38[8], +(i25[8], 1))
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(8) -> (0), if ((i25[8] + 1 →* i25[0])∧(i38[8] →* i29[0]))
(0) -> (1), if ((i29[0] > 1 →* TRUE)∧(i29[0] →* i29[1])∧(i25[0] →* i25[1]))
(1) -> (2), if ((i25[1] →* i25[2])∧(0 →* i38[2])∧(i29[1] →* i29[2])∧(i29[1] →* i41[2]))
(1) -> (7), if ((i25[1] →* i25[7])∧(i29[1] →* i40[7])∧(i29[1] →* i29[7])∧(0 →* i38[7]))
(7) -> (8), if ((i38[7] →* i38[8])∧(i40[7] →* i40[8])∧(i25[7] →* i25[8])∧(i29[7] →* i29[8])∧(i40[7] <= 1 && i25[7] + 1 > 0 →* TRUE))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(8) -> (0), if ((i25[8] + 1 →* i25[0])∧(i38[8] →* i29[0]))
(0) -> (1), if ((i29[0] > 1 →* TRUE)∧(i29[0] →* i29[1])∧(i25[0] →* i25[1]))
(1) -> (7), if ((i25[1] →* i25[7])∧(i29[1] →* i40[7])∧(i29[1] →* i29[7])∧(0 →* i38[7]))
(7) -> (8), if ((i38[7] →* i38[8])∧(i40[7] →* i40[8])∧(i25[7] →* i25[8])∧(i29[7] →* i29[8])∧(i40[7] <= 1 && i25[7] + 1 > 0 →* TRUE))
(1) (i38[7]=i38[8]∧i40[7]=i40[8]∧i25[7]=i25[8]∧i29[7]=i29[8]∧&&(<=(i40[7], 1), >(+(i25[7], 1), 0))=TRUE∧+(i25[8], 1)=i25[0]∧i38[8]=i29[0] ⇒ COND_LOAD4752(TRUE, i25[8], i29[8], i40[8], i38[8])≥NonInfC∧COND_LOAD4752(TRUE, i25[8], i29[8], i40[8], i38[8])≥LOAD344(i38[8], +(i25[8], 1))∧(UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥))
(2) (<=(i40[7], 1)=TRUE∧>(+(i25[7], 1), 0)=TRUE ⇒ COND_LOAD4752(TRUE, i25[7], i29[7], i40[7], i38[7])≥NonInfC∧COND_LOAD4752(TRUE, i25[7], i29[7], i40[7], i38[7])≥LOAD344(i38[7], +(i25[7], 1))∧(UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥))
(3) ([1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧[(-1)bso_25] ≥ 0)
(4) ([1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧[(-1)bso_25] ≥ 0)
(5) ([1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧[(-1)bso_25] ≥ 0)
(6) ([1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥)∧0 = 0∧0 = 0∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_25] ≥ 0)
(7) ([1] + i40[7] ≥ 0∧i25[7] ≥ 0∧i40[7] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥)∧0 = 0∧0 = 0∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_25] ≥ 0)
(8) ([1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0∧i40[7] ≥ 0 ⇒ (UIncreasing(LOAD344(i38[8], +(i25[8], 1))), ≥)∧0 = 0∧0 = 0∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_25] ≥ 0)
(9) (i38[7]=i38[8]∧i40[7]=i40[8]∧i25[7]=i25[8]∧i29[7]=i29[8]∧&&(<=(i40[7], 1), >(+(i25[7], 1), 0))=TRUE ⇒ LOAD475(i25[7], i29[7], i40[7], i38[7])≥NonInfC∧LOAD475(i25[7], i29[7], i40[7], i38[7])≥COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])∧(UIncreasing(COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])), ≥))
(10) (<=(i40[7], 1)=TRUE∧>(+(i25[7], 1), 0)=TRUE ⇒ LOAD475(i25[7], i29[7], i40[7], i38[7])≥NonInfC∧LOAD475(i25[7], i29[7], i40[7], i38[7])≥COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])∧(UIncreasing(COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])), ≥))
(11) ([1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])), ≥)∧[bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]i40[7] ≥ 0∧[2 + (-1)bso_27] + [-1]i40[7] ≥ 0)
(12) ([1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])), ≥)∧[bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]i40[7] ≥ 0∧[2 + (-1)bso_27] + [-1]i40[7] ≥ 0)
(13) ([1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])), ≥)∧[bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]i40[7] ≥ 0∧[2 + (-1)bso_27] + [-1]i40[7] ≥ 0)
(14) ([1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])), ≥)∧0 = 0∧0 = 0∧[bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]i40[7] ≥ 0∧0 = 0∧0 = 0∧[2 + (-1)bso_27] + [-1]i40[7] ≥ 0)
(15) ([1] + i40[7] ≥ 0∧i25[7] ≥ 0∧i40[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])), ≥)∧0 = 0∧0 = 0∧[bni_26 + (-1)Bound*bni_26] + [bni_26]i40[7] ≥ 0∧0 = 0∧0 = 0∧[2 + (-1)bso_27] + i40[7] ≥ 0)
(16) ([1] + [-1]i40[7] ≥ 0∧i25[7] ≥ 0∧i40[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])), ≥)∧0 = 0∧0 = 0∧[bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]i40[7] ≥ 0∧0 = 0∧0 = 0∧[2 + (-1)bso_27] + [-1]i40[7] ≥ 0)
(17) (>(i29[0], 1)=TRUE∧i29[0]=i29[1]∧i25[0]=i25[1]∧i25[1]=i25[7]∧i29[1]=i40[7]∧i29[1]=i29[7]∧0=i38[7] ⇒ COND_LOAD344(TRUE, i29[1], i25[1])≥NonInfC∧COND_LOAD344(TRUE, i29[1], i25[1])≥LOAD475(i25[1], i29[1], i29[1], 0)∧(UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥))
(18) (>(i29[0], 1)=TRUE ⇒ COND_LOAD344(TRUE, i29[0], i25[0])≥NonInfC∧COND_LOAD344(TRUE, i29[0], i25[0])≥LOAD475(i25[0], i29[0], i29[0], 0)∧(UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥))
(19) (i29[0] + [-2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]i29[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(20) (i29[0] + [-2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]i29[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(21) (i29[0] + [-2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧[bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]i29[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(22) (i29[0] + [-2] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧0 = 0∧[bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]i29[0] ≥ 0∧0 = 0∧[(-1)bso_29] ≥ 0)
(23) (i29[0] ≥ 0 ⇒ (UIncreasing(LOAD475(i25[1], i29[1], i29[1], 0)), ≥)∧0 = 0∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]i29[0] ≥ 0∧0 = 0∧[(-1)bso_29] ≥ 0)
(24) (>(i29[0], 1)=TRUE∧i29[0]=i29[1]∧i25[0]=i25[1] ⇒ LOAD344(i29[0], i25[0])≥NonInfC∧LOAD344(i29[0], i25[0])≥COND_LOAD344(>(i29[0], 1), i29[0], i25[0])∧(UIncreasing(COND_LOAD344(>(i29[0], 1), i29[0], i25[0])), ≥))
(25) (>(i29[0], 1)=TRUE ⇒ LOAD344(i29[0], i25[0])≥NonInfC∧LOAD344(i29[0], i25[0])≥COND_LOAD344(>(i29[0], 1), i29[0], i25[0])∧(UIncreasing(COND_LOAD344(>(i29[0], 1), i29[0], i25[0])), ≥))
(26) (i29[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD344(>(i29[0], 1), i29[0], i25[0])), ≥)∧[(-1)bni_30 + (-1)Bound*bni_30] ≥ 0∧[-2 + (-1)bso_31] + i29[0] ≥ 0)
(27) (i29[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD344(>(i29[0], 1), i29[0], i25[0])), ≥)∧[(-1)bni_30 + (-1)Bound*bni_30] ≥ 0∧[-2 + (-1)bso_31] + i29[0] ≥ 0)
(28) (i29[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD344(>(i29[0], 1), i29[0], i25[0])), ≥)∧[(-1)bni_30 + (-1)Bound*bni_30] ≥ 0∧[-2 + (-1)bso_31] + i29[0] ≥ 0)
(29) (i29[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD344(>(i29[0], 1), i29[0], i25[0])), ≥)∧0 = 0∧[(-1)bni_30 + (-1)Bound*bni_30] ≥ 0∧0 = 0∧[-2 + (-1)bso_31] + i29[0] ≥ 0)
(30) (i29[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD344(>(i29[0], 1), i29[0], i25[0])), ≥)∧0 = 0∧[(-1)bni_30 + (-1)Bound*bni_30] ≥ 0∧0 = 0∧[(-1)bso_31] + i29[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD4752(x1, x2, x3, x4, x5)) = [-1] + [-1]x1
POL(LOAD344(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(LOAD475(x1, x2, x3, x4)) = [1] + [-1]x3
POL(&&(x1, x2)) = 0
POL(<=(x1, x2)) = [-1]
POL(>(x1, x2)) = 0
POL(0) = 0
POL(COND_LOAD344(x1, x2, x3)) = [1] + [-1]x2
LOAD475(i25[7], i29[7], i40[7], i38[7]) → COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])
COND_LOAD4752(TRUE, i25[8], i29[8], i40[8], i38[8]) → LOAD344(i38[8], +(i25[8], 1))
LOAD475(i25[7], i29[7], i40[7], i38[7]) → COND_LOAD4752(&&(<=(i40[7], 1), >(+(i25[7], 1), 0)), i25[7], i29[7], i40[7], i38[7])
LOAD344(i29[0], i25[0]) → COND_LOAD344(>(i29[0], 1), i29[0], i25[0])
COND_LOAD4752(TRUE, i25[8], i29[8], i40[8], i38[8]) → LOAD344(i38[8], +(i25[8], 1))
COND_LOAD344(TRUE, i29[1], i25[1]) → LOAD475(i25[1], i29[1], i29[1], 0)
LOAD344(i29[0], i25[0]) → COND_LOAD344(>(i29[0], 1), i29[0], i25[0])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(8) -> (0), if ((i25[8] + 1 →* i25[0])∧(i38[8] →* i29[0]))
(0) -> (1), if ((i29[0] > 1 →* TRUE)∧(i29[0] →* i29[1])∧(i25[0] →* i25[1]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(4) -> (5), if ((i38[4] →* i38[5])∧(i41[4] →* i41[5])∧(i41[4] > 0 && i41[4] <= 1 →* TRUE)∧(i29[4] →* i29[5])∧(i25[4] →* i25[5]))